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Abstract. Environmental problems caused by accidents occurring during transportation of chemicals along rivers and lakes are 
increasing considerably the interest in the study of the dispersion and transport of pollutant in water bodies. In these cases, the most 
important information obtained from the simulation are the time required for the pollutant to eventually reach the points where the 
water is collected for treatment and distribution, its corresponding concentration, and the time required for the disposal to leave the 
corresponding area. The aim of this work is to develop a method to obtain an analytical solution to the two-dimensional advection-
diffusion equation which describes the dispersion of pollutant in a water body. The proposed method is based on the application of a 
differential operator which transforms analytical solutions of a differential equation into new analytical solutions of the same 
equation. The main advantage of applying this operator is the fact that each new solution has a greater number of arbitrary 
parameters which allow the solution to satisfy the boundary conditions of the problem in wide regions of the considered domain. We 
simulate contaminant dispersion in the Guaíba Lake, in the outskirts of Porto Alegre. The results obtained were compared with 
available data in literature.  
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1. Introduction  
 
 Environmental problems caused by accidents occurring during transportation of chemicals along rivers and lakes 
are increasing considerably the interest in the study of the dispersion and transport of pollutant in water bodies. In these 
cases, the most important information obtained from the simulation are the time required for the pollutant to eventually 
reach the points where the water is collected for treatment and distribution, its corresponding concentration, and the 
time required for the disposal to leave the corresponding area. To be effective, such information must be obtained in 
real time in order to permit implementation of the appropriate emergency procedures, such as to keep certain pumps 
turned off for some time interval or to eventually confine the disposal in a region far from the collecting points, for 
further treatment and removal.  
 The advection diffusion equation that describes mathematically the pollutant dispersion in a water body is given by 
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where C  is the pollutant concentration, t is the time variable, Kx, Ky e Kz are the diffusion coefficients over the 
respective spatial variables, k is the decay constant, u, v and w are the components of the velocity vector in x, y and z 
directions, respectively, Q corresponds to the source term.  
 Several analytical, numerical and hybrid methods which solve Eq. (1) can be found in literature (Zwillinger, 1997), 
but the analytical solution for some problems of great interest in environmental engineering is not known yet. 
Alternative methods used to solve Eq. (1) can be compared. The numerical methods based on discrete formulations, 
such as finite difference and finite elements yield good results (Carnaham, 1972; Ortega et al, 1981; Reali et al, 1984; 
Greenspan et al., 1988; Bohm, 1990; Rajar et al., 1997; Periáñez, 1998; Yang et al., 1998; Carroll et al, 2000; Bonnet et 
al, 2001; Drago et al., 2001). Curvilinear grids can be used (Valentine, 1959; Churchill, 1975; Spiegel, 1977; Hauser et 
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al, 1986). Systems based on finite elements have specialized generators of triangular and hexagonal grids that can be 
adapted to the region geometry (Dhaubadel et al., 1987).  
 Zabadal (1991) used a variational method (Reddy, 1984) which consisted of a combination of the Petrov-Galerkin 
formulation and a discretization scheme to simulate the dispersion of coliform and oxygen in Guaíba lake. This 
formulation produced good results and had an acceptable processing speed for practical purposes.  
 Using symbolic computation, the systems based on integral transforms yield hybrid numerical analytical solutions 
to heat and mass diffusion-convection problems. This method consists of transforming the original partial differential 
equation into a decoupled infinite system of ordinary differential equations (Cotta, 1993).  
 In 1999, Lersch et al. developed a formulation based on the application of the Fourier transform to obtain 
approximate solutions in closed form for the two-dimensional advection-diffusion equation. In 2000, Zabadal et al. 
proposed an extension of the component suppression schemes to obtain a closed form solution for water pollution 
problems. This method consists of fitting functions of the differential operators in the formal solution by polynomials. 
 In 2005, Zabadal et al. (2005a) proposed a method based on the application of the rules for manipulation of 
exponential of differential operators in order to obtain a solution for a problem of pollutant dispersion in a water body, 
assuming that the contaminant does not reach the margins any place of its path and that the velocity field was locally 
constant and previously known.  In the same year, Zabadal et al. (2005b) developed an iterative scheme which produced 
a sequence of analytical solutions for the advection-diffusion equation applied to water pollution problems. 
  The aim of this work is to develop a method to obtain an analytical solution to the two-dimensional advection-
diffusion equation which describes the dispersion of pollutant in a water body. Analytical solutions have several 
advantages: they are expressed in a closed form, the programs based on this kind of solutions require less processing 
time, since there is a reduction of the number of operations to be performed, then the amount of memory required to 
execute the routines decreases significantly. Besides, the source codes based on closed-form solutions are short and 
easy to depurate. The proposed method is based on the application of a differential operator which transforms analytical 
solutions of a differential equation into new analytical solutions of the same equation. The main advantage of applying 
this operator relies on the fact that each new solution has a greater number of arbitrary parameters which allow the 
solution to satisfy the boundary conditions of the problem in wide regions of the considered domain. We simulate 
contaminant dispersion in the Guaíba Lake, in the outskirts of Porto Alegre, Brazil. The results obtained were compared 
with available data in literature. 
 This article is outlined as follows. In section 2, the mathematical problem is described. In section 3, the two-
dimensional advection-diffusion equation describing the process is first transformed into an auxiliary equation with the 
stream function and the velocity potential of the corresponding inviscid flow as independent variables. In section 4, the 
results obtained by a simulation in Guaíba Lake are shown. Finally, in section 5, conclusion and recommendations for 
future work are drawn. 
 
2. Mathematical description of the problem 
 
 The problem of pollutant dispersion in a water body can be described as 
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and the initial state of the system is given by 
 
 ( ) ( )ccc yyxxcyxc −−= δδ),(0             (3) 
 
where C denotes the pollutant concentration, t is the time variable, D  is the diffusion coefficient, k is the decay 
constant, u e v are the velocity vector components in x and y directions, respectively, the initial condition ),(0 yxc  is an 
impulse with the same mass of the discharge, cx  and cy  are coordinates of the center of the isocurves. 
 The process of solving the problem described by Eq. (2) and Eq. (3) is showed in the next section. 
 
3. Solution of the advection-diffusion equation  
 
 Applying the method of separation of variables, assuming that the velocity field is stationary and that the pollutant 
degradation is independent of the diffusion and of the advection through the water body, 
 
 ( ) ( ) ( )yxcttyxC ,,, ⋅= τ .                                       (4) 
 
 The substitution of Eq. (4) in Eq. (2) followed by the division of the resulting equation by ( ) ( )yxct ,⋅τ  yields 
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where λ  corresponds to the separation constant. The system can be written as 

 λτ
τ

=+ k
dt
d1

,                           (6) 
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 Solving Eq. (6) results 
 
 ( ) ( )tket λττ −−= 0 .                                        (8) 
 
 In equation (8), as λ−k  corresponds to the value of the decay constant, and hence, λ  must be equal to zero, so the 
system formed by Eq. (6) and Eq. (7) becomes 
 

  0=+ ττ
k
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                              (9) 
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 The solution of  Eq. (9) is given by Eq. (8), considering  0=λ . In order to obtain a solution for Eq. (10) valid for 
all the domain, a change of variables is performed to rewrite it in terms of new orthogonal coordinates Φ  and Ψ . The 
main goal of the change of variables is to map the water body geometry in a rectangular domain in the new coordinate 
system. 
 
3.1 Advection-diffusion equation in an orthogonal curvilinear coordinate system 
 
 Equation (10) can be expressed in terms of the new variables ( )yx,Φ  and ( )yx,Ψ , which constitute an orthogonal 
curvilinear system of coordinates, as 
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 Analyzing Eq. (11) and considering the possibility of using a formulation which is independent of the water body 
geometry, it becomes clear that this equation can be mapped into the target equation 
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provided that the following auxiliary equations are satisfied: 
 
 1=Φ−Φ−Φ+Φ yyxxyx DDvu ,                        (13) 
 
 0=Ψ−Ψ−Ψ+Ψ yyxxyx DDvu ,            (14) 

 
 ( ) 122 =Φ+Φ yx               (15) 
 
and 
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 ( ) 122 =Ψ+Ψ yx .              (16)

   
 The term of first order in Ψ  does not appear in Eq. (11) because the advective transport occurs only along the 
streamlines. In order to solve Eq. (12) a new formulation to obtain the Lie symmetries admitted by differential 
equations is employed. This formulation is shown in the next subsection. 
 
3.2 The use of mapping to obtain Lie symmetries 
 
 Considering +∞<Φ<−∞ , +∞<Ψ<0 , the problem described by Eq. (12) and subjected to the boundary 
condition 
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and to the restriction 
 
 ( ) ( )Ψ=ΨΦ 00 , cc             (18)  
 
can be solved by the application of the differential operator defined by 
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where I  is the identity operator and ( )ΨΦ,1p , ( )ΨΦ,2p  and ( )ΨΦ,3p  are coefficients to be determined. This 
operator B  transforms analytical solutions of a partial differential equation into new analytical solutions of the same 
equation. Each new solution has a greater number of arbitrary elements which allow this new solution to satisfy a wider 
set of boundary conditions.  
 If 1f  is an analytical solution of Eq. (12) whose differential operator can be defined as 
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then the application of A over 1f  results zero 
 
 01 =Af .              (21) 
  
 As B  generates new analytical solutions of a partial differential equation 
 
 gBf =1               (22) 
 
where g  is a new solution of Eq. (12) and consequently 
 
 0=Ag ,              (23) 
 
so it can be written that  
 
 01 =ABf .             (24) 
 
 Solving the system formed by Eq. (21) and Eq. (24) the coefficients ( )ΨΦ,1p , ( )ΨΦ,2p  and ( )ΨΦ,3p , which 
appear in Eq. (19), are determined and this equation can be rewritten as 
 

 ( ) ( ) ( ) ( ) ( ) ( )ΨΦΨ⋅++
Ψ∂

ΨΦ∂Φ⋅++
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ΨΦ∂Ψ⋅−= ,
,

2
,

2 121314 c
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where 1η , 2η , 3η  and 4η  are arbitrary constants. 
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 In order to reach the most general solution that can be obtained by the application of this method, we solve 
 
 cBc = ,             (26) 
 
which produces the invariant solution that can be found when employing operator B. 
 
 The solution for Eq. (26) is given by 
 

 ( ) ( )
( ) ( )

( )

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

Ψ⋅+−

+Φ
++Φ

⋅Ψ⋅−Ψ⋅+Φ⋅−Φ−=ΨΦ
2

2

2
242

2
232

41
2

2

2
243

2
2

4

2

2
arctan22

exp1,
η

ηηη

ηηη
ηηη

ηηηηFc    (27) 

 
where 1F  denotes an arbitrary function. 
 
 The application of the boundary condition represented by Eq. (17) over Eq. (27) produces 
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using the concept of reflection at a boundary (Crank, 1975). The restriction given by Eq. (18) determines the arbitrary 
function F1. In order to write Eq. (28) in the original coordinate system, a suitable combination of stream functions can 
be used to represent the flow around a given margin and the corresponding velocity potential. For example, 
 
 ( ) ( )yxfyUyx ,, +⋅=Ψ                                      (29) 
 
represents the composition of the stream function for the uniform flow and the stream function for an arbitrary margin. 
Applying the Cauchy-Riemann equations (Churchill, 1975) 
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it is possible to find an expression for the potential velocity 
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 The substitution of Eq. (29) and Eq. (32) in Eq. (28) yields the solution of Eq. (10) in terms of the original variables 
and the pollutant concentration described by Eq. (4) in any point of the domain is given by 
 
 ( ) ( ) ( )( )yxyxceyxC kt ,,,, ΨΦ= − .              (33) 
 
4. Results and discussion 
 
 In order to illustrate the efficiency of the proposed method, a simulation of a problem of an accident occurred 
during the transportation of benzene in Guaíba Lake is performed. Figure 1 shows a sketch of this lake which has 70Km 
of bank extension, its area is 496Km2 and its length is about 50Km. 
 

 
 

Figure 1: Sketch of Guaíba Lake 
 
 In this simulation the expression used to represent the stream function is 
 
 ( ) ( )( )[ ]xfyyUyx −⋅⋅+⋅=Ψ ∞ 01,0arctan800,                                                  (34) 
 
where ∞U  is the free stream velocity and )(xf  corresponds to the function that describes the margin of the considered 
domain. The velocity potential Φ  is calculated by the application of the Cauchy-Riemann equations. The substitution 
of Φ  and Ψ  in Eq. (33) gives the solution in Cartesian coordinates. It is considered a discharge of 1.000m3 of benzene 
in a region close to Déa Coufal Street. The data used are 07,0=∞U m/s and 4105 −⋅=D  m2/s, the initial shape of the 
discharge in orthogonal coordinates is approximated by 
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and it specifies function 1F  in Eq. (28). 
 Figure 2 shows the accident location and the blob’s path. It’s possible to observe the regions reached by the blob 
along this path.   
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Figure 2: Accident Location close to Déa Coufal Street and blob’s path 
 
  Figure 3 shows the blob’s extension close to the inlet called Ponta do Arado Velho obtained by the proposed 
method. It took 20 hours for the blob to get to this place.  
 

 
 

Figure 3: Blob’s extension close to Ponta do Arado Velho obtained by the proposed method 
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 Figure 4 shows the blob’s extension reported by Zabadal (2000). In both methods the the blob’s extension and the 
time required to reach Ponta do Arado Velho are the same.  
 

 
 

Figure 4: Blob’s extension close to Ponta do Arado Velho obtained by Zabadal (2000) 
 
 It is important to emphasize that considering the environmental damage caused by the blob, this simulation 
corresponds to be worst case, because the concentration values are over estimated for pollutant of low solubility, as the 
collecting points are located 1,2m under the water body surface. 
 The results were obtained in 10 seconds in microcomputer Semprom 2.4GHZ with 512MB RAM. In the same 
computer, considering the same scenario the results reported by Zabadal (2000) were generated in 90 seconds. 
 
5. Conclusion 
 

The main advantage of the proposed method relies on the computational features of the corresponding code. The 
low processing time required to obtain the solutions with Maple V and the small amount of memory needed in most 
calculations, allow the simulations to be carried out in microcomputers. Obtaining the solution in real time allows 
advising authorities the regions which will be reached by the blob, in such a way that, emergency procedures, such as 
turning off certain pumps and confining the disposal in a region far from the collecting points for further treatment or 
removal, can be performed. The solutions can be implemented in a code written in procedural language, avoiding the 
use of numerical methods for simulating realistic pollutant dispersion scenarios. The results coincide with data available 
in literature. The research is currently focused in the formulation of analytical procedures for dealing with the bacteria 
dispersion in water bodies. 
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